- Jacobian elliptic function
- Физика: эллиптическая функция Якоби
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Elliptic integral — In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern mathematics defines an elliptic integral as any… … Wikipedia
Elliptic curve cryptography — (ECC) is an approach to public key cryptography based on the algebraic structure of elliptic curves over finite fields. The use of elliptic curves in cryptography was suggested independently by Neal Koblitz[1] and Victor S. Miller[2] in 1985.… … Wikipedia
Jacobi's elliptic functions — In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that have historical importance with also many features that show up important structure, and have direct relevance to some… … Wikipedia
Doubly-periodic function — In mathematics, a doubly periodic function is a function f defined at all points z in a plane and having two periods , which are linearly independent vectors u and v such that:f(z) = f(z + u) = f(z + v).,The doubly periodic function is thus a two … Wikipedia
Doubly periodic function — In mathematics, a doubly periodic function is a function defined at all points on the complex plane and having two periods , which are complex numbers u and v that are linearly independent as vectors over the field of real numbers. That u and v… … Wikipedia
Pendulum (mathematics) — The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allows the equations of motion to be solved analytically for small angle oscillations. Simple gravity… … Wikipedia
Theta characteristic — In mathematics, a theta characteristic of a non singular algebraic curve C is a divisor class Θ such that 2Θ is the canonical class, In terms of holomorphic line bundles L on a connected compact Riemann surface, it is therefore L such that L 2 is … Wikipedia
L. M. Milne-Thomson — Louis Melville Milne Thomson Born May 1, 1891(1891 05 01) Ealing, London, England Died August 21, 1974( … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… … Wikipedia
Algebraic curve — In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with… … Wikipedia